

Contents

1	Sum	mmary Table 6		
2	Exe	xecutive Summary		
3	Intro	oduction		
4	Equ	ipment Summary8		
	4.1	Overview of the Assets	9	
	4.2	Detailed Equipment Summary	11	
	4.3	Asset Age Profile	11	
	4.4	Asset Condition Profile	13	
5	Prob	olem/Opportunity Statement		
	5.1	Why are we doing this work	15	
	5.2	What happens if we do nothing	16	
	5.3	Key outcomes and understanding success	16	
	5.4	Alignment with overall RIIO-3 investment strategy	16	
	5.5	Narrative real-life example of problem	16	
	5.5.	Narrative real-life example of problem	16	
	5.5.	.2 Instrumentation and Telemetry	17	
	5.6	Project Boundaries	18	
6	Prob	pability of Failure		
	6.1	Failure modes	18	
	6.2	Failure rates for EI&T	18	
	6.3	Probability of Failure Data Assurance	18	
7	Consequence of Fault or Failure			
	7.1	Safety	18	
	7.2	Security of Supply	18	
	7.3	Environmental	18	
	7.4	Future Energy Scenarios	19	
	7.5	Monetised Risk	19	
8	Opti	ions Considered		
	8.1	Modes of intervention	19	

	8.1	.1	Repair of EI&T Assets	20
	8.1	.2	Replacement of EI&T assets	20
	8.1	.3	Full EI&T system replacement	20
	8.2	Tim	ing choices	21
	8.3	Prog	gramme Options	21
	8.3	.1	Basis of Programme Volumes	21
	8.3	.2	Basis of Unit Cost	21
	8.3	.3	Programme option 1: Asset Health driven; pre-emptive system replace	21
	8.3	.4	Programme option 2: Asset Health driven; pre-emptive system replace (Cor 22	nstrained)
	8.4	Tec	hnical Summary Table: Programme Options	22
9	Bus	iness	Case Outline and Discussion	22
	9.1	Key	Business Case Drivers Description	23
	9.2	Bus	iness Case Summary	
	9.2	.1	Discussion of results	23
	9.2	.2	Customer View and Willingness to pay	23
	9.2	.3	Sensitivity Testing	24
	9.3	Con	clusions	25
10	Pre	ferred	Option Scope and Project Plan	25
	10.1	Pref	erred Option	25
	10.2	RIIC	0-3 Volume and Spend Profile	26
	10.3	Inve	estment Risk Discussion	27
	10.4	Proj	ect Plan	28
	10.5	Key	Business Risks and Opportunities	28
	10.6	Out	outs included in RIIO-2 Plans	28
11	Reg	gulato	ry Treatment	28
12	Glo	ssary		28
Ta	able	of F	igures	

Figure 2: Example, Instrumentation asset	10
Figure 3: Example: Telemetry cabinet	10
Figure 4: Condition Profile of Electrical Assets by Network	13
Figure 5: Condition Profile of Instrumentation Assets by Network	13
Figure 6: Condition Profile of Telemetry Assets by Network	14
Figure 7: Example: Distribution board: Electrical System	16
Figure 8: Example: Distribution board: Electrical System	16
Figure 10: Example: [sensitive data retracted]. Exd Electrical System	17
Figure 9: Example: Lighting Electrical System	17
Figure 11: Example: [sensitive data retracted]. Telemetry systems	17
Figure 12: Example: [sensitive data retracted]. Keystone Hood PTX with new PTX after investment	ıt. 17
Figure 14: Example: [sensitive data retracted]. Hazardous are Junction box	17
Figure 13: Example: [sensitive data retracted]. Keystone hood PRS	17
Figure 15: Forecast Fault Rates of EI&T systems over time (Baseline: Reactive "Do nothing")	18
Figure 16: Monetised risk (Repair cost + Probabilistic Run in Manual cost) for Baseline: Reactive "	do
nothing"	19
Figure 17: Monetised risk reduction of option 1 & 2 in comparison to baseline option	23
Table of Tables	
Table 1: Summary Table	6
Table 2: RIIO-2-GD3 Volume and Spend Profile	7
Table 3: Operational equipment summary information	
Table 4: Overview of EI&T design life	9
Table 5: Summary of EI&T systems broken down by type and network	11
Table 6: Year of asset install % by region: Electrical (Asset life circa 25 years)	12
Table 7: Year of install % by region: Instrumentation (Asset life circa 15 years)	12
Table 8:Year of install % by region: Telemetry (Asset life circa 15 years)	12
Table 9: Percentage of asset population with health score of 4&5 compared to total asset count	14
Table 10: Fault type and consequence for EI&T Assets	18
Table 11: Investment Options Overview	19
Table 12: Intervention Mode 1: Repair of EI&T assets on failure	20
Table 13: Intervention mode 2: Replacement of El&T assets on failure	20
Table 14: Intervention mode 3: Full replacement of EI&T system	20
Table 15: Intervention mode timing choices	21
Table 16: Initial Programme Options	21
Table 17: Key features: Programme option 1: Asset Health driven; pre-emptive system replace	22
Table 18: Technical summary of Investment options	22

CADENT - CONFIDENTIAL

Table 19: Perceived value of each option as a business case	23
Table 20: Sensitivity Test Table	24
Table 21: Volume of EI&T system upgrades	25
Table 22: RIIO-3 Volumes of resilience and decarbonisation system types to be installed	25
Table 23: Volume of CNI UPS battery banks	25
Table 24: RIIO-3 Total Volume & Cost with total % contribution split	26
Table 25: Spend profile for EI&T interventions	26
Table 26: Volume profile for EI&T interventions	26
Table 27: Investment risk discussion	27
Table 28: Programme of EI&T upgrades by PRS / Offtake	28
Table 29: Glossary Table	28

CADENT CONFIDENTIAL

1 Summary Table

Name of Project	Electrical Instrumentation and Telemetry		
Scheme Reference	EJP02		
Primary Investment Driver	Asset Health- Secure and Resilient supplies		
Project Initiation Year	Start date for proposed RIIO-3 work plan: 2026		
Project Close Out Year	Completion date for proposed RIIO-3 work plan: 2031		
Total Installed Cost Estimate (£m)	Total installed cost for RIIO-3 work-plan [cost data redacted]		
Cost Estimate Accuracy (%)	+/-5%		
Project Spend to date (£m)	Spend to date for RIIO-3 work-plan: [cost data redacted] Spend to date for RIIO-2 work plan: [cost data redacted]		
Current Project Stage Gate	Current stage gate for Health investment	the RIIO-3 work-plan: Ro	olling programme of Asset
Reporting Table Ref	5.01 LTS storage and entry, within the PRS and NTS Offtake Sub Tables under the Electrical and Instrumentation intervention lines.		
Outputs included in RIIO-3 Business Plan	Yes		
Spend apportionment (for RIIO-3 plan £m)	RIIO-2	RIIO-3	RIIO-4
	[cost data redacted]	[cost data redacted]	[cost data redacted]
Proposed Regulatory treatment for RIIO-3 workplan	Base		

Table 1: Summary Table

This investment case does not satisfy the criteria for late competition or early competition and pursuing these activities would not be in the interests of the customer. We recognise the benefits that competition can bring to customers through efficiency and innovation. We continue to challenge ourselves as a business to ensure that we are harnessing competitive forces where they can provide these benefits. For specific detail on how we have assessed competition, please see Chapter 6 of the Workforce and Supply Chain Strategy (Appendix 17).

All costs presented in this paper are pre-efficiency and are in 23/24 price base, unless otherwise stated.

2 Executive Summary

Electrical Instrumentation and Telemetry (EI&T) equipment is an integral part of our infrastructure and is used for a variety of purposes, including plant monitoring, alarm response, control, telemetry, metering, and Safety Instrumented Systems (SIS).

We are investing in EI&T systems to address the risk posed by a decline in readily available spares through our supply chain. Aged assets are typically at risk of being unsupported when they are superseded by newer technology, assets operating beyond their design life increase the likelihood of failure and the associated downtime to resolve. Failure of such assets has an impact on both operation of the network from a security of supply perspective, and, financially through direct OPEX.

Ensuring that we invest in our oldest and least reliable systems also allows us to leverage the ability to increase our resilience and reduce our carbon emissions where applicable. We have considered a preemptive and reactive approach to replacing this equipment. We have developed a rationale which is included in the "Options considered" section.

To effectively manage our EI&T assets, we have grouped our assets at a system level for investment. We have chosen this approach because focusing on individual asset investment fails to address the risks inherent in an aging EI&T system with limited or no spares. Replacing a single asset within a larger system does not effectively mitigate risk or improve overall reliability. Therefore, a system-level perspective is essential for developing a robust investment strategy.

As part of our analysis, we have combined the asset health model output with the Network Asset Risk Metric (NARM) deterioration methodology, this analysis has indicated that we need to continue to invest to ensure we are able to continue to manage and monitor the network effectively. If we do not invest, our assets become increasingly prone to failure, which, in turn, compromises their ability to meet essential safety and reliability standards.

Our proposed investment case for RIIO-3, wilk invest [cost data redacted] in our EI&T systems, holding asset health stable, while improving our operational resilience and reducing our carbon emissions, while delivering an investment strategy which balances customer expectations, cost and feasible workload.

Below is a table which summarises RIIO-2-GD3 cost and volume for EI&T systems:

Table 2: RIIO-2-GD3 Volume and Spend Profile

3 Introduction

This document covers the engineering justification for EI&T systems at Offtakes and Pressure Reduction System (PRS) sites. EI&T equipment is an integral part of our infrastructure for monitoring and managing our above 7 bar networks.

In RIIO-3 we continue to invest in our assets driven by asset reliability, accounting for performance and condition of our EI&T systems. Through our modelling and observed network condition, there is a specific focus in investment in our Offtakes. By nature, Offtakes are larger with more operational equipment on them and there is a relative increase in spend to intervene at these sites as compared to our PRS interventions.

We have created an asset health model which has been developed using the principles of the NARM methodology to generate an Investment Prioritisation List (IPL) for our EI&T systems.

Our analysis has enabled us to quantify the risk of our programme options. However, we have not used it for broader programme planning or optimisation because there is a complex correlation between failure and services which the industry does not currently model.

Our final investment cost and volumes have been derived by combining our asset model outputs with an asset and network specific unit cost; the methodology of which is discussed in our Network Asset Management Strategy (NAMS). This paper will provide information on the basis of unit costs in Section 0.

4 Equipment Summary

This section sets out the EI&T assets in use, provides a summary of the number of EI&T systems by site type and region, and then gives a summary of the current condition of the asset stock.

	Summary information
Location on the network	These systems are located on our above 7bar Offtakes and Pressure Reduction System (PRS) sites
Normal operating modes	EI&T systems are an integral part of operational gas sites and therefore operate continuously. This continuous operation is needed to ensure that the site is continuously monitored and controlled, as well as supplying raw power to buildings and security assets.
Electrical Redundancy architecture	Backup power to site via Uninterruptable Power Supply (UPS), permanent or standby power generation, batteries to maintain telemetry only for up to 8hrs (minimum/last line of defence)
Instrumentation Redundancy architecture	Instrumentation is configured in accordance with the mechanical operating modes of a working and standby stream. If there is an instrumentation failure an alarm is generated from the instrument. If the system fails mechanically, the instrumentation for monitor and control is replicated on the mechanical standby streams to ensure continued monitoring.

	Summary information
Telemetry Redundancy architecture	If the telemetry fails/comms go down, there is no redundancy. The ECC will utilise information from upstream and downstream sites (where available) to monitor the network until comms are back online, and/or the site will be manned until the fault is resolved.
Global equipment count	On our above 7bar Offtake and PRSs, there are 1335 installations which utilise EI&T systems

Table 3: Operational equipment summary information

4.1 Overview of the Assets

There are a wide range of assets which form part of the overall EI&T systems at Offtake and PRS sites. Depending on the site configuration, demand requirements and criticality, this will vary from site to site.

For context the typical design life for each asset is shown in the table below, we do currently operate with assets that have exceeded this age and are still functional, although when assets exceed their expected design life, they become more prone to non-repairable failures.

Asset	Typical Design Life (Years)
Electrical	25
Instrumentation	15
Telemetry	10

Table 4: Overview of EI&T design life

The EI&T assets on a "typical site" may include, but are not limited the following:

Electrical systems: Electrical systems are installed on operational gas sites to provide power to monitoring and protection equipment as well as raw power to building services, where required electrical supplies are backed up by standby generators and UPS systems to ensure there is a continuation of control and monitoring in the event of loss of power to the site.

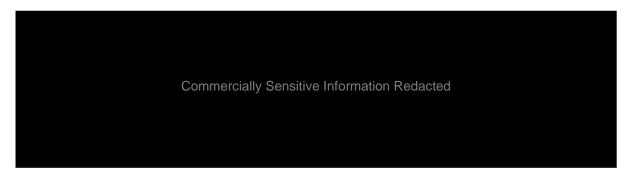


Figure 1: Example. Electrical distribution system overview

- Low voltage distribution systems
- Earthing
- Cables
- Back-up power systems
- Security systems
- Valve actuators
- · Heating and ventilation
- Lighting (i.e. task and emergency)

Instrumentation systems: Instrumentation systems are installed on the operational gas sites to monitor and aid control of the plant. Typical examples of instrumentation are:

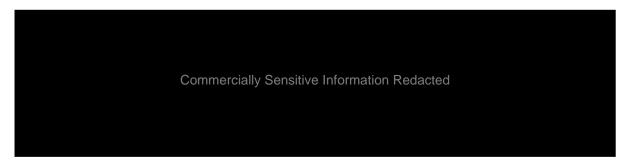


Figure 2: Example, Instrumentation asset

- Pressure / temperature / level / flow transmitters & s
- Non-fiscal flow meters
- Cables
- Solenoids
- Valve positioners
- Galvanic / Zener safety barriers
- Electronic and pneumatic controllers

Telemetry equipment Telemetry Equipment includes:

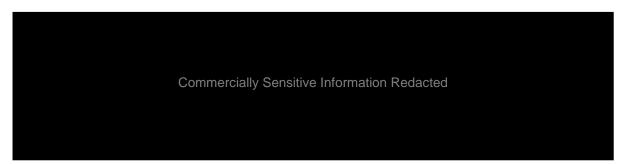


Figure 3: Example: Telemetry cabinet

- Remote Terminal Units (RTU)
- Programmable Logic Controllers (PLC)
- Routers

- Cables
- Human Machine Interfaces (HMI)
- Ethernet switches
- Satellite indoor and outdoor units

These devices are used to collate and process the plant information and transmit it over a communications link to the ECC, typically every 60 seconds, via:

- Satellite
- Mobile Data (4G)
- Ultra-High Frequency (UHF) Radio

4.2 Detailed Equipment Summary

The number of above 7 bar systems within scope of this investment case have been identified from the SAP equipment register.

There is a collective total of 1307 Offtakes, and PRS sites which are operated and maintained by us containing EI&T systems. Of these, [sensitive data redacted] are monitored and/or controlled by ECC with the remaining [sensitive data redacted] sites only having raw power such as heating and lighting. The below table gives an overview of the total systems which contribute to these sites split by network and asset class.

Table 5: Summary of EI&T systems broken down by type and network

4.3 Asset Age Profile

The following tables illustrate the total percentage of asset stock by year of install for EI&T assets. This enables us to give an overview of the asset install year profile which in turn allows us to identify the age profile of the assets.

The following table sets out a percentage view of asset install year of Electrical assets. The design life is typically 25 years.

Commercially Sensitive Information Redacted

Table 6: Year of asset install % by region: Electrical (Asset life circa 25 years)

Based on the data presented in Table 6, it is evident that the [sensitive data retracted] of electrical assets above the black threshold line have exceeded their typical designed service life of 25 years. Furthermore, an additional [sensitive data redacted] of these assets will reach or surpass their typical designed service life by the conclusion of the RIIO-3 period.

The following table sets out a percentage view of asset install year of instrumentation assets: The design life is typically 15 years.

Commercially Sensitive Information Redacted

Table 7: Year of install % by region: Instrumentation (Asset life circa 15 years)

Based on the data presented in Table 7, it is evident that [sensitive data redacted] of instrumentation assets above the black threshold line have exceeded typical designed service life. Furthermore, an additional [sensitive data retracted] of these assets will reach or surpass their typical designed service life by the conclusion of the RIIO-3 period.

The following table sets out a percentage view of asset install year of Telemetry assets. The design life is typically 10 years.

Commercially Sensitive Information Redacted

Table 8: Year of install % by region: Telemetry (Asset life circa 15 years)

Based on the data presented in Table 8 it is evident that [sensitive data redacted] of our Telemetry assets above the black threshold line have exceeded their typical designed service life. Furthermore,

an additional [sensitive data redacted] of these assets will reach or surpass their typical designed service life by the conclusion of the RIIO-3 period.

When assets exceed their intended designed service life, operational efficiency may be maintained through routine maintenance and inspections, but the likelihood of non-repairable failures increases. This extended operation accompanied by a decline in the availability of readily obtainable replacement components, presents a heightened risk to the continued operation of the network.

Through RIIO-GD1 and RIIO-2, these assets have a rolling programme of inspections and maintenance, using the information gained from these we have invested in our EI&T systems, taking into consideration site criticality, asset age, supply chain and reliability. We intend to continue to invest in this way into RIIO-3, addressing asset reliability in the role EI&T plays in securing supply of gas to our customers.

4.4 Asset Condition Profile

The base data used in the asset health model is sourced from SAP, utilising a combination of the asset health index score, historical fault data, available spares through our supply chain, and validation through internal stakeholder engagement and SME engineering knowledge. It has enabled us to determine a current health score of our assets.

Below is a graph representation of the health score of our EI&T assets.

Figure 4: Condition Profile of Electrical Assets by Network



Figure 5: Condition Profile of Instrumentation Assets by Network

Commercially Sensitive Information Redacted

Figure 6: Condition Profile of Telemetry Assets by Network

The age and condition profile reveals that a significant portion of EI&T assets have surpassed their designed service life, with further assets projected to reach end-of-life within the RIIO-2 period. When assets exceed their typical life expectancy there is an increase in likelihood of failures and subsequent downtime due to lack of readily available spares. This combined with health scores of 4&5 across EI&T assets poses a potential risk to the network's reliability and resilience, and therefore increases our risk profile.

The below table is to summarise the assets which have a health score of 4&5 against the total asset population.

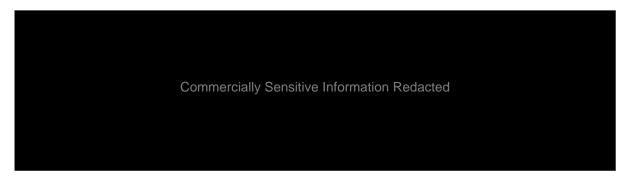


Table 9: Percentage of asset population with health score of 4&5 compared to total asset count

The above table indicates a difference between the EI&T asset health scores. The higher percentage of assets with risk scores of 4 & 5 is a direct consequence of their shorter maximum expected design life.

Assets with shorter design lives, particularly I&T, degrade faster. This accelerated degradation increases the likelihood of them reaching a higher risk state before being replaced, resulting in a larger proportion of assets falling into those higher risk categories.

Furthermore, rapid technological advancements create challenges for these assets. As surrounding technologies evolve, these assets may become difficult to interface with or support, effectively becoming obsolete even if they haven't reached the end of their physical lifespan. This obsolescence contributes to the higher risk profile of I&T assets.

While the percentage of high-risk assets is smaller in electrical assets, it is crucial to state that the absolute number of electrical assets is significantly greater than instrumentation and telemetry assets. This means that even a smaller percentage can translate to a substantial number of at-risk assets.

Therefore, neglecting electrical assets based solely on the percentage could leave a large number of critical components vulnerable to failure. This could lead to widespread disruptions and significant operational challenges, potentially outweighing the risks associated with the smaller number of high-risk I&T assets.

We are unable to provide a health score indication at the end of the RIIO-3 period as we currently do not model this asset family in AIM, however as part of our strategy we are targeting investment in systems which have a health score of 4 & 5 and pose the largest risk to our security of supply.

To mitigate the risks associated with failure and ensure uninterrupted service, pre-emptive investment is needed to ensure we reduce our risk profile.

5 Problem/Opportunity Statement

5.1 Why are we doing this work

Through our investment strategy, we expect to reduce the risk profile of this asset group. We seek to maintain our demonstrable safety and compliance record as well as ensure the operation of our Offtakes and PRSs does not contribute to any emissions.

Our EI&T systems compromise of deteriorating systems, we need to ensure that we manage these appropriately, and find a balance between customer expectations, cost, and feasible workload.

The drivers for investment in EI&T are:

- Mitigate the risk associated by asset deterioration and reduced reliability. Including adhering to specific regulatory requirements that directly affect EI&T
- Compliance: with the Network and Information Systems regulations (2018) (NIS), ensuring all future installations are compliant to the regulation

By investing in new technologies, we have the opportunity to enhance our operational efficiency, resilience, and reliability by integrating the below into our network:

- New EI&T Technologies: Unlock real-time network performance data. Proactively identify and address issues, boosting efficiency and safety
- Uninterruptible Power Supplies (UPS): Eliminate downtime. Safeguard critical equipment against power outages and fluctuations. Enhance safety and reliability, especially during extreme weather
- Integrating Renewable Energy Sources: Reduce reliance on the grid and lower our carbon footprint with solar and wind power. Boost sustainability and cut energy costs

This EI&T investment also presents an opportunity to install low-cost additional equipment when addressing asset health:

- Differential Pressure Transmitters: Continuously monitor pressure difference of filters. This data allows enables us to reduce unnecessary venting, reducing emissions, and minimising disruption to gas supply. It can contribute to optimising filter maintenance, leading to longer filter life and reduced costs.
- Flow Monitors: Allows for continuous, real-time data on gas flow within the network. Aiding in the ability pinpoint and locate leaks, optimising safety, and efficiency. Crucially, flow monitors also verify complete gas isolation before maintenance, protecting our workforce and the public.

By investing in EI&T we will directly continue to contribute to deliver against our RIIO-3 Environmental Action Plan (EAP) by:

Reducing Offtake and PRS emissions by removing the need to vent as frequently

- Continue to reduce other direct emissions, by implementing more energy efficient technology
- Optimising pressure management with flow meters and more accurate sensors
- Provide accurate flow and pressure data to aid with decommissioning plans

5.2 What happens if we do nothing

[Commercially sensitive information – section redacted]

5.3 Key outcomes and understanding success

[Commercially sensitive information – section redacted]

5.4 Alignment with overall RIIO-3 investment strategy

[Commercially sensitive information – section redacted]

5.5 Narrative real-life example of problem

[Commercially sensitive information – section redacted]

5.5.1 Electrical example

Commercially Sensitive Information Redacted

Figure 7: Example: Distribution board: Electrical System

Figure 8: Example: Distribution board: Electrical System

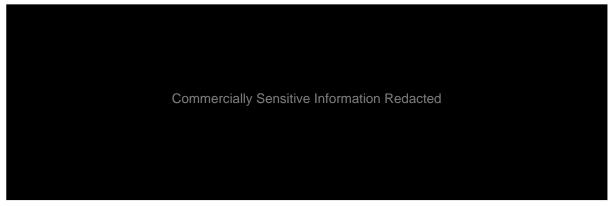


Figure 10: Example: Lighting Electrical System

Figure 9: Example: [sensitive data retracted]. Exd Electrical System

5.5.2 Instrumentation and Telemetry

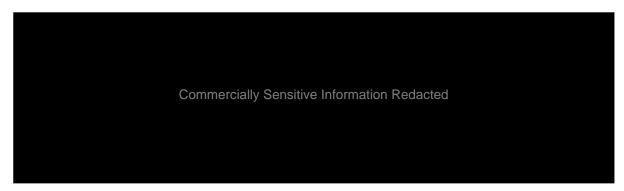


Figure 11: Example: [sensitive data retracted].

Telemetry systems

Figure 12: Example: [sensitive data retracted].

Keystone Hood PTX with new PTX after

investment

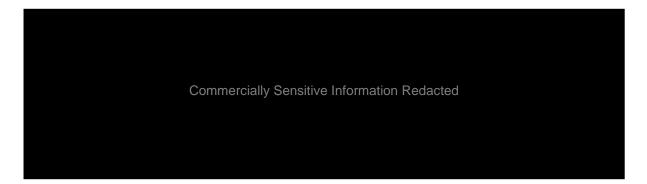


Figure 14: Example: [sensitive data retracted].

Keystone hood PRS

Figure 13: Example: [sensitive data retracted]. Hazardous are Junction box

5.6 Project Boundaries

[Commercially sensitive information – section redacted]

6 Probability of Failure

[Commercially sensitive information – section redacted]

6.1 Failure modes

Table 10: Fault type and consequence for EI&T Assets

6.2 Failure rates for EI&T

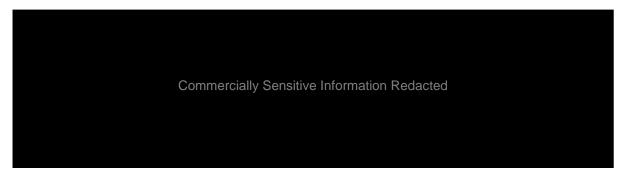


Figure 15: Forecast Fault Rates of EI&T systems over time (Baseline: Reactive "Do nothing")

6.3 Probability of Failure Data Assurance

[Commercially sensitive information – section redacted]

7 Consequence of Fault or Failure

[Commercially sensitive information – section redacted]

7.1 Safety

[Commercially sensitive information – section redacted]

7.2 Security of Supply

[Commercially sensitive information – section redacted]

7.3 Environmental

[Commercially sensitive information – section redacted]

7.4 Future Energy Scenarios

[Commercially sensitive information – section redacted]

7.5 Monetised Risk

[Commercially sensitive information – section redacted]

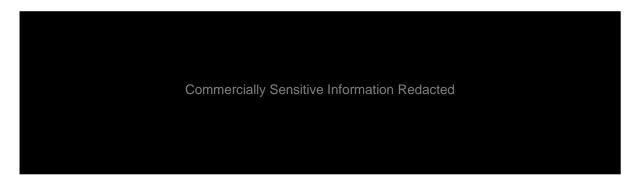


Figure 16: Monetised risk (Repair cost + Probabilistic Run in Manual cost) for Baseline: Reactive "do nothing"

8 Options Considered

[Commercially sensitive information – section reducted]

8.1 Modes of intervention

[Commercially sensitive information – section redacted]

Commercially Sensitive Information Redacted

Table 11: Investment Options Overview

8.1.1 Repair of EI&T Assets

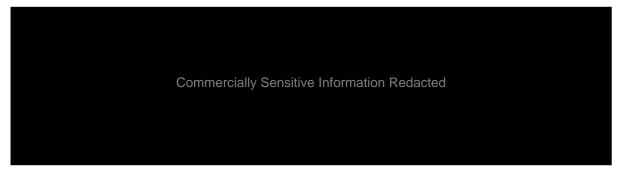


Table 12: Intervention Mode 1: Repair of EI&T assets on failure

8.1.2 Replacement of EI&T assets

8.1.3 Full EI&T system replacement

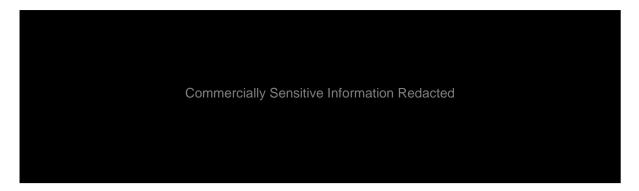


Table 14: Intervention mode 3: Full replacement of El&T system

8.2 Timing choices

8.3 Programme Options

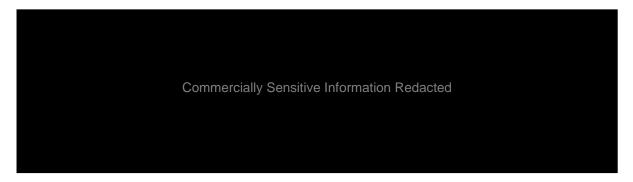


Table 15: Intervention mode timing choices

Commercially Sensitive Information Redacted

Table 16- Initial Programme Options

8.3.1 Basis of Programme Volumes

[Commercially sensitive information – section redacted]

8.3.2 Basis of Unit Cost

[Commercially sensitive information – section redacted]

8.3.3 Programme option 1: Asset Health driven; pre-emptive system replace



Table 17: Key features: Programme option 1: Asset Health driven; pre-emptive system replace

- 8.3.4 Programme option 2: Asset Health driven; pre-emptive system replace (Constrained)
- 8.4 Technical Summary Table: Programme Options

Commercially Sensitive Information Redacted

Table 18: Technical summary of Investment options

9 Business Case Outline and Discussion

[Commercially sensitive information – section redacted]

9.1 Key Business Case Drivers Description

9.2 Business Case Summary

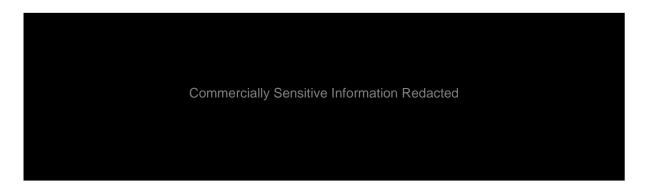


Table 19: Perceived value of each option as a business case

9.2.1 Discussion of results

9.2.2 Customer View and Willingness to pay

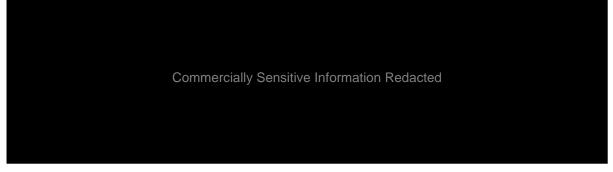


Figure 17: Monetised risk reduction of option 1 & 2 in comparison to baseline option

9.2.3 Sensitivity Testing

Table 20: Sensitivity Test Table

9.3 Conclusions

10 Preferred Option Scope and Project Plan

[Commercially sensitive information – section redacted]

10.1 Preferred Option

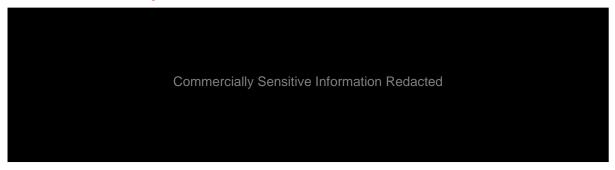


Table 21: Volume of EI&T system upgrades

Commercially Sensitive Information Redacted

Table 22: RIIO-3 Volumes of resilience and decarbonisation system types to be installed

Commercially Sensitive Information Redacted

Table 23: Volume of CNI UPS battery banks

Commercially Sensitive Information Redacted

Table 24: RIIO-3 Total Volume & Cost with total % contribution split

10.2 RIIO-3 Volume and Spend Profile

Commercially Sensitive Information Redacted

Table 25: Spend profile for El&T interventions

Commercially Sensitive Information Redacted

Table 26: Volume profile for EI&T interventions

.

10.3 Investment Risk Discussion

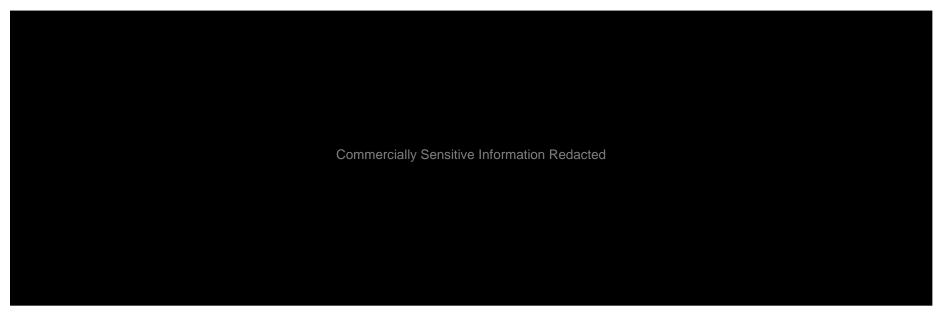


Table 27: Investment risk discussion

10.4 Project Plan

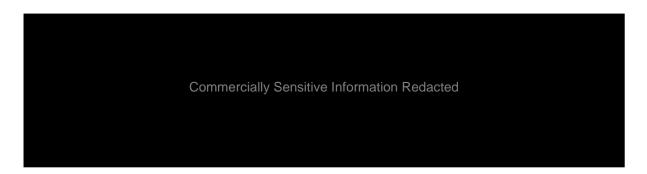


Table 28: Programme of El&T upgrades by PRS / Offtake

- 10.5 Key Business Risks and Opportunities
- 10.6 Outputs included in RIIO-2 Plans
- 11 Regulatory Treatment

12 Glossary

Term	Definition	
СВА	Cost Benefit Analysis	
EI&T	Electrical, Instrumentation and Telemetry	
EJP	Engineering Justification Paper	
FES	Future Energy Scenarios	
FTE	Full Time Equivalent	
NPV	Net Present Value	
PRS	Pressure Reduction System	
UPS	Uninterruptible Power Supply	

Table 29: Glossary Table